
doc/VMM40

doc/VMM40 ii

COLLABORATORS

TITLE :

doc/VMM40

ACTION NAME DATE SIGNATURE

WRITTEN BY January 29, 2023

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

doc/VMM40 iii

Contents

1 doc/VMM40 1

1.1 VMM40/doc/VMM40.guide . 1

1.2 VMM40/doc/VMM40.guide/COPYRIGHT . 2

1.3 VMM40/doc/VMM40.guide/INTRODUCTION . 2

1.4 VMM40/doc/VMM40.guide/INSTALLATION . 2

1.5 VMM40/doc/VMM40.guide/VMM40PREFS . 3

1.6 VMM40/doc/VMM40.guide/REGISTRATION . 4

1.7 VMM40/doc/VMM40.guide/PROBLEMS . 4

1.8 VMM40/doc/VMM40.guide/QUESTIONS . 5

1.9 VMM40/doc/VMM40.guide/TECHNICAL_DES . 5

1.10 VMM40/doc/VMM40.guide/KNOWN_BUGS . 7

1.11 VMM40/doc/VMM40.guide/FUTURE_PLANS . 7

1.12 VMM40/doc/VMM40.guide/ACKNOWLEDGMENTS . 7

1.13 VMM40/doc/VMM40.guide/MISCELLANEOUS . 8

doc/VMM40 1 / 8

Chapter 1

doc/VMM40

1.1 VMM40/doc/VMM40.guide

VMM40
(Virtual Memory Machine for Amigas with 68040)

User’s Guide
Version 1.0

$Date: 93/12/07 19:00:06 $
written by Martin Apel

email: apel@gypsy.physik.uni-kl.de

CONTENTS

0.
Copyright
1.

Introduction
2.

Installation
3.

VMM40Prefs
4.

Registration
5.

Problems
6.

Questions and Answers
7.

Technical description
8.

Known bugs
9.

Future plans
10.
Acknowledgments
11.
Miscellaneous

doc/VMM40 2 / 8

1.2 VMM40/doc/VMM40.guide/COPYRIGHT

IMPORTANT NOTICE: This program is copyrighted by Martin Apel, but can
be freely distributed, provided that the following rules are
respected.

- No change is made to the program nor to the accompanying documentation
- The package is always distributed in its complete form consisting of
the following files: "VMM40", "StartVMM40", "VMM40Prefs",
"VMM40.guide", "TestedPrograms", "RegistrationForm", "VMM40.prefs",
"VMProgGuideline", "README" and "History".

- Every form of distribution is allowed and encouraged, but no fee can
be charged for this program except for, possibly, the cost of magnetic
media and/or disk duplication and shipping.

- Inclusion in PD software libraries such as Fish Disks is allowed,
provided the fees charged for these disks are comparable with those
charged by Fred Fish.

- The program cannot be distributed in any commercial product without
the written consent of the author.

By copying, distributing and/or using the program you indicate your
acceptance of the above rules.

1.3 VMM40/doc/VMM40.guide/INTRODUCTION

1. INTRODUCTION

Even on the A4000 equipped with 6 MB sometimes I longed for more
memory or, as an alternative, for virtual memory. As the 68040
contains an MMU and I was interested in learning how it works, I
decided to write a virtual memory manager for the Amiga myself. It
emulates up to 32 MB in a user selectable amount of physical RAM. In
this first version paging is only supported to partitions, not to
files. So in order to use VMM40 you have to provide a partition of
the size you need.
VMM40 installs a standard memory list in ExecBase, so virtual memory
will be handled just like other memory. VM is allocated only when the
MEMF_PUBLIC flag in the allocation is not set. Otherwise system data
such as task control blocks and IORequests might be paged out, which
would lead to failure. Code can NOT be put into virtual memory,
because the DOS loader always requests memory with MEMF_PUBLIC flag
set.

1.4 VMM40/doc/VMM40.guide/INSTALLATION

2. INSTALLATION

VMM40 requires at least OS2.0 to run. To install VMM40 you simply
have to copy the executables into a directory in your path. All these
files have to be in the same directory. The first time you use VMM40,

doc/VMM40 3 / 8

you have to start VMM40Prefs first to specify the paging partition,
the amount of RAM dedicated to paging and so on. To start VMM40,
simply call StartVMM40 without any parameters. To quit, start
StartVMM40 again, or click the close gadget of the statistics window,
if statistics are enabled. A sample configuration file "VMM40.prefs"
is provided which you can use as a starting configuration (paging
partition still has to be entered).

1.5 VMM40/doc/VMM40.guide/VMM40PREFS

3. VMM40PREFS

In order to enter all the settings that are needed for VMM40 to work,
there’s a nice GUI provided with the program. Do NEVER modify the
configuration file generated by VMM40Prefs by hand. If this file is
not what it’s supposed to be, VMM40 may crash or, even worse, use the
wrong partition or the like.

Here’s a description of the gadgets and what they do:

Tasks / Programs list:
You can enter task or program names, which should always be run either
using VM or not. They are entered with the state of the "Use VM"
gadget below the list and can be modified afterwards. The name you
enter can either be a task name, the name of a load file (without
path), or even a normal AmigaDOS pattern to specify which entity is
meant to be run with or without VM.

VM by default:
If selected, all programs not found in the task list may use VM,
otherwise not.

Statistics:
If selected, a small window is opened, which displays statistics of
the paging process. It contains a close gadget. If you click this
AND no more VM is currently in use, VMM40 will quit. If there’s any
VM still in use, VMM40 will not allocate any more VM to other
requesting tasks, but will quit as soon as the rest of VM is returned.

The memory allocation gadgets:
The first gadget determines, if VMM40 uses either the largest
continuous chunk of memory available at startup for paging or a
selectable amount, which you can select with the slider gadget just
below.

Swap medium:
Until now only paging to a partition is supported. When you click on
"Select" a window with all drives will show up and you can select one
of them. If you select a partition for paging for the first time,
VMM40 will ask you if you really want to overwrite that partition, so
you need not worry about destroying the wrong partition.

Swap file size:
This gadget is only valid for paging to a file. As this is not yet

doc/VMM40 4 / 8

implemented, it is always disabled for now.

VM priority:
Here you can select, when VM will be allocated. Exec searches through
all memory lists in a priority order with normal FAST memory usually
at priority 30, CHIP at -10. So if you want to allocate VM first, you
have to select a value larger than 30; if you want to use normal fast
memory first, but VM before CHIP memory, you have to select a value
between -10 and 30.

1.6 VMM40/doc/VMM40.guide/REGISTRATION

4. REGISTRATION

This program isn’t shareware or the like, but I wish you would send me
your configuration data, so I can see potential problems with certain
configurations. VMM40 has been thoroughly tested on a A4000/40 with 6
MB and the standard IDE-harddisk used as a paging device. I have
included a registration form in this distribution I want you to send
me, if you are using VMM40 successfully or you are experiencing any
problems with it.

1.7 VMM40/doc/VMM40.guide/PROBLEMS

5. PROBLEMS

Commodore defined the MEMF_PUBLIC flag for the AllocMem function once
upon a time, when no-one knew what this would mean in future days.
The result is that either people allocated all their memory with the
MEMF_PUBLIC flag set or they ignored this at all and never set it.
The first way doesn’t hurt VMM40, but it makes the corresponding
program not use virtual memory. The second alternative is worse.
There are a lot of programs, which allocate messages or IORequests on
the stack, which might produce a failure in a virtual memory
environment. Such programs can be forbidden to use virtual memory
using the preferences program, otherwise spurious crashes may result.
If you are considering writing programs which might benefit from
virtual memory, you should read the file "VMProgGuideline" to see what
should be avoided in a virtual memory environment.
The other major problem is that I don’t know whether VMM40 works on
machines other than the A4000. I don’t have access to an Amiga with a
68040 card installed, so testing is quite difficult. I hope this will
be fixed in the next release.
Caching programs such as FastCache or PowerCache should be run after
VMM40. They should also be disabled from using virtual memory
(doesn’t make sense to give virtual memory to a caching program, does
it?). The same applies to all programs that patch the BeginIO vector
of the paging device.
Programs which use the Access Fault Trap Vector such as Enforcer have
to be run before VMM40, otherwise Enforcer will flag all page-faults

doc/VMM40 5 / 8

as invalid memory references.

1.8 VMM40/doc/VMM40.guide/QUESTIONS

6. QUESTIONS AND ANSWERS

Question: Program "X" doesn’t use virtual memory. Why?
Answer: "X" might always allocate memory with the MEMF_PUBLIC flag

set. There’s currently no way to make "X" use virtual memory.
If this is not the case, you may have excluded it from using
virtual memory in VMM40Prefs.

Question: VMM40 crashes with my configuration. How do I find out which
program behaves badly ?

Answer: Disable the gadget "VM by default" in VMM40Prefs and move
the memory slider to a low position, so there are many
page-faults, when VMM40 runs. Then enable virtual memory for
each task in your system one after another. This way you can
see, when the system crashes first. You can disable VM for
the task producing the crashes then.

1.9 VMM40/doc/VMM40.guide/TECHNICAL_DES

7. TECHNICAL DESCRIPTION

VMM40 consists of three tasks, enabling the statistics window invokes
a fourth. The first one is the VM_Manager, who takes care of deciding
which task is allowed to use VM, initializing everything and so on.
The PageHandler does the paging, when a page-fault has occurred. The
Prepager causes pages to be locked in memory, when IO has to be
carried out to or from VM using the paging device. Most of the effort
has not been invested into getting the paging to run, but to make the
system use VM correctly under all circumstances. Unfortunately
Commodore hasn’t invested much thought into the definition of the
MEMF_PUBLIC flag, so a few system functions had to be patched. I have
tried to keep VMM40 as system-friendly as possible, but I had to make
a few assumptions, which are not documented. The worst one is that I
had to patch the Switch function, which puts a task from running into
the ready or wait state. This means that VMM40 might not run in
future versions of the OS, though I don’t think Commodore will be
changing much in such low level code.
Commodore also didn’t state anything about using non-public memory
inside Forbid/Permit or Disable/Enable. Causing a page-fault inside a
forbidden/disabled section is dangerous, because paging results in
task switching. Allocating virtual memory inside a forbidden/disabled
section is consequently disabled, the same applies to freeing memory.
Memory which should be freed inside such a section is freed when this
section is completed.
Currently the number of faults in process plus the number of tasks
using VM for their stack must not be more than 20 at any moment.

doc/VMM40 6 / 8

The VM_Manager process

The VM_Manager starts up all other tasks and initializes most data.
It also handles the quit request by the user. Each time AllocMem is
called, VMM40 has to decide whether the requesting process is allowed
to use VM. The first time a task/process allocates memory, a message
is sent to the VM_Manager, which decides if VM is permitted.
Subsequent requests by the same task are decided using a hash table.

The PageHandler task

All paging is handled asynchronously by the page handler. When a
fault occurs, the params for such a fault are put into a so-called
trap-struct by the trap-handling code and this is sent to the
pagehandler. The pagehandler chooses a page to be evicted and
possibly writes out a modified page out first. When this process is
finished, the required page is read in. When the read has been
successfully completed, the faulting task is signalled to continue its
computation. During IO to the paging device other tasks are permitted
to run and eventually cause other page-faults, which are handled
immediately.

The Prepager task

In the process of writing VMM40 I have detected some cases, in which
IO to the paging device is requested, e.g. to another partition
living on the same physical device as the paging partition. As the
paging device itself must never block for a page-fault, this has to be
prevented. All IO to the paging device (except that from the
pagehandler) is examined for usage of virtual memory. If it uses VM,
the corresponding pages are locked into memory, the IO is carried out,
the pages are unlocked and the process requesting IO is permitted to
continue.

The statistics task

The statistics task is only created, when statistics are enabled using
the VMM40Prefs program. Every second it prints a few lines about
usage of virtual memory, number of page-faults occurred so far and the
number of trap-structs currently in use.

Patches to system functions

The following Exec functions are patched by VMM40: Switch, AddTask,
AllocMem, FreeMem. Additionally the BeginIO function of the paging
device is patched. The Switch and AddTask functions had to be patched
because the stack may be in virtual memory. To prevent page-faults
while in supervisor mode (task-switching), the stack is replaced by a
temporary stack large enough to contain all registers pushed onto the
stack during a context switch. When the task is re-launched, the
original stack is used again.

doc/VMM40 7 / 8

1.10 VMM40/doc/VMM40.guide/KNOWN_BUGS

8. KNOWN BUGS

As far as I know there are no major bugs in VMM40. However there is
one minor bug which still has to be corrected. If a task is removed
via RemTask from another task and it uses virtual memory for its
stack, the TrapStruct is currently not released. Commodore recommends
not to call RemTask on another task and it isn’t done very often in
real programs. One possibility is to prevent the task that allocates
the stack for such programs from using virtual memory.

1.11 VMM40/doc/VMM40.guide/FUTURE_PLANS

9. FUTURE PLANS

There are several features I want to include in future versions of
VMM40 such as:

- Paging to a disk file
- Dynamic allocation and freeing of memory used for paging
- Dynamic allocation of TrapStructs (see

7. Technical description
)

- Support to use virtual memory for code segments / seglists (maybe)

I would like to include a list of working programs and of programs
with problems in this documentation in the next release (based on your
registration data).

1.12 VMM40/doc/VMM40.guide/ACKNOWLEDGMENTS

10. ACKNOWLEDGMENTS

I would like to thank the following people for doing the Beta testing
and providing me with ideas:

Torsten Stolpmann
Juergen Zimmermann
Torsten Ebeling

doc/VMM40 8 / 8

1.13 VMM40/doc/VMM40.guide/MISCELLANEOUS

11. MISCELLANEOUS

I would be glad to hear from you, if VMM40 works on your machine, what
programs have difficulties in running together with VMM40. Please
mail the filled in registration form to my email address:
apel@gypsy.physik.uni-kl.de.

	doc/VMM40
	VMM40/doc/VMM40.guide
	VMM40/doc/VMM40.guide/COPYRIGHT
	VMM40/doc/VMM40.guide/INTRODUCTION
	VMM40/doc/VMM40.guide/INSTALLATION
	VMM40/doc/VMM40.guide/VMM40PREFS
	VMM40/doc/VMM40.guide/REGISTRATION
	VMM40/doc/VMM40.guide/PROBLEMS
	VMM40/doc/VMM40.guide/QUESTIONS
	VMM40/doc/VMM40.guide/TECHNICAL_DES
	VMM40/doc/VMM40.guide/KNOWN_BUGS
	VMM40/doc/VMM40.guide/FUTURE_PLANS
	VMM40/doc/VMM40.guide/ACKNOWLEDGMENTS
	VMM40/doc/VMM40.guide/MISCELLANEOUS

